The Expansion of Wronskian Hermite Polynomials in the Hermite Basis
نویسندگان
چکیده
We express Wronskian Hermite polynomials in the basis and obtain an explicit formula for coefficients. From this we deduce upper bound modulus of roots case partitions length 2. also derive a general real purely imaginary roots. These bounds are very useful study irreducibility polynomials. Additionally, generalize some our results to larger class
منابع مشابه
On Hermite-hermite Matrix Polynomials
In this paper the definition of Hermite-Hermite matrix polynomials is introduced starting from the Hermite matrix polynomials. An explicit representation, a matrix recurrence relation for the Hermite-Hermite matrix polynomials are given and differential equations satisfied by them is presented. A new expansion of the matrix exponential for a wide class of matrices in terms of Hermite-Hermite ma...
متن کاملQuantum Hermite Interpolation Polynomials
Abstract. The concept of Lagrange and Hermite interpolation polynomials can be generalized. The spectral basis of idempotents and nilpotents of a factor ring of polynomials provides a powerful framework for the expression of Lagrange and Hermite interpolation in 1, 2 and higher dimensional spaces. We give a new definition of quantum Lagrange and Hermite interpolation polynomials which works on ...
متن کاملHermite–Van Vleck polynomials
We are interested in the special Heun equation, " special " means that all exponent differences are odd multiples of 1/2. Heun means 4 regular singularities.
متن کاملGeneralized Hermite Polynomials 1
The new method for obtaining a variety of extensions of Hermite polynomials is given. As a first example a family of orthogonal polynomial systems which includes the generalized Hermite polynomials is considered. Apparently, either these polynomials satisfy the differential equation of the second order obtained in this work or there is no differential equation of a finite order for these polyno...
متن کاملZeros of exceptional Hermite polynomials
Exceptional orthogonal polynomials were introduced by Gomez-Ullate, Kamran and Milson as polynomial eigenfunctions of second order differential equations with the remarkable property that some degrees are missing, i.e., there is not a polynomial for every degree. However, they do constitute a complete orthogonal system with respect to a weight function that is typically a rational modification ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry Integrability and Geometry-methods and Applications
سال: 2021
ISSN: ['1815-0659']
DOI: https://doi.org/10.3842/sigma.2021.003